

SHAPED CHARGE JET STANAG Propositions for an updated edition

IMEMG's Expert Working Group on Hazard Assessment & Classification

Presented by Yves GUENGANT

www.imemg.org

INTRODUCTION

INTRODUCTION

 European Organisation assembling twenty leading armament groups working with Insensitive Munitions technologies

INTRODUCTION

Express the armament industry's viewpoint with regards to relevant transnational regulations and requirements.

Expert Working Groups:

- Computer Models for IM Performance,
- Cost & Benefit Analysis,
- Effects of Ageing,
- Fast Cook-off Test Procedure,
- Hazard Assessment & Classification.

Hazard Assessment & Classification Expert Working Group to present this analysis

CONTEXT

CONTEXT

STANAG 4526 ed2

"SHAPED CHARGE JET - MUNITIONS TEST PROCEDURE"

- → not a real standardized reference:
 - not ratified by all Nations,
 - 50 mm Rockeye Shaped Charge not readily available,
 - Performance not correctly defined for determination of an equivalent Shaped Charge,
 - test set-up not clearly defined (conditioning plate, target nose, ...),
 - each test center to use own Shaped Charge and test procedure.

CONTEXT

- Recent feedback from Afghanistan and Iraq
- → Threat Hazard Analysis review :

Standard Shaped Charges design which would be representative of numerous RPG7 types:

- USA MIL-STD-2105(D) specifies a standardised LX-14 81mm Shaped Charge.
- France has designed CCEB 62,
- **Germany** is developing PG-7 replica;
- Presentation to introduce industrial experts points-of-view to the IM community.
- > This paper could feed discussions for the 2014 MSIAC Workshop dedicated to SCJ STANAG.

CURRENT SITUATION

STANAG 4439 Ed3 & AOP 39 Ed3

STANAG 4439 ed3

- Threat: Shaped Charge weapon attack → Requirement: Type III,
- Shaped Charge Jet, Munitions Test Procedure → STANAG 4526 Ed2.

STANAG 4439 Ed3 & AOP 39 Ed3

• AOP 39

- The Baseline Threat Range
- » shaped charge caliber up to 85 mm diameter (AOP39 table 1).
- For the purpose of IM:
- » shaped charge to be "broadly representative of Rocket Propelled Grenades and top attacks bomblets" (AOP39 annex F)
- Test conditions (AOP39 annex H):
 - » 50mm Rockeye or equivalent v²d charge,
 - » Use of conditioning plate not defined.

TEST PROCEDURE STANAG

STANAG 4526 ed2

SHAPED CHARGE JET - MUNITIONS TEST PROCEDURE

- designed for "determining the degree of reaction of a munition when hit by typical top attack bomblet shaped charge jet"
 - » not ratified by all NATO nations
 - » specified charge (50mm Rockeye) not readily available in many countries, therefore **not used** in IMEMG's Nations

TEST PROCEDURE STANAG

• STANAG 4526 (Ed2)

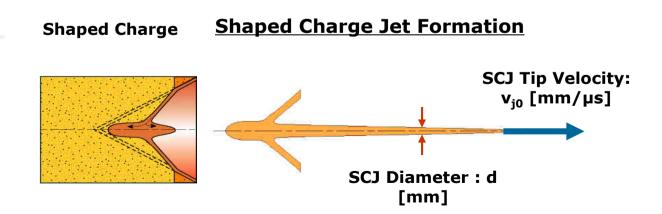
SHAPED CHARGE JET - MUNITION TEST PROCEDURES (cont'd)

- >> test set-up **not precisely defined** (potential use of conditioning plate)
- inconsistent values about 50mm Rockeye (confirmed during MSIAC IM Technology Gaps Workshop June 2011)
 - » paper: "Rocket Propelled Grenade Shaped Charge Initiation Test Configuration for IM Threat Testing" by Ernest L. Baker and al.

IMPLEMENTATION DIFFICULTIES

- The v²d values is the link between different shaped charges
 - various shaped charges allowed, if same v²d
 - values noted in STANAG 4526 Table 1 much too high by at least a factor of > 2

Threat	Representative V ² D (mm ³ /μs ²)				
Top Attack Bomblet	200				
SCJ with characteristics of 50mm Rockeye	360				
Rocket Propelled Grenade	430				
Anti-Tank Guided Missile	800				


IMPLEMENTATION DIFFICULTIES

- For example RPG-7
 - typical measured values for the Shaped Charge Jet tip:
 - $v \sim 7.5$ mm/ μ s and d ~ 3 mm gives a v^2 d value of ~ 170 mm³/ μ s²
 - different from 430 mm³/µs² as noted in the table
 - > 430/170 = 2.5 too large

IMPLEMENTATION DIFFICULTIES

- As v²d is the link between different shaped charges
 - » very important to define exactly how V and d should be measured as below;
 - » Both numbers V and d are not constant but variably over the Shaped Charge Jet length;
 - » the scattering within the measurements should be taken into account.

COMPARISON OF IM SIGNATURES

- Conditioning plate often use to :
 - adjust v²d value according to specific Threat Hazard Analysis,
 - avoid the rear slug effect discrepancies.
 - » a munition to pass the STANAG 4526 but which is the real stimulus?

- In-service Shaped Charge are equipped with target nose
 - i.e. for RPG7, target nose can reduce significantly the v²d with the "same" charge

COMPARISON OF IM SIGNATURES

- Main parameters to be known
 - Shaped Charges
 - » Diameter from 45 mm to 120 mm,
 - » In-service charge: with or without target nose,
 - » High performance (tapered & fast) jet /// un-optimized and cheap serial charge,
 - Conditioning plate use,
 - Stand-off value,
 - Break-up time,
 - Penetration capability.

COMMENTS ON CURRENT CHANGES

NEW THREAT DEFINITION

- Recent feedback from Afghanistan and Iraq led to a Threat Hazard Analysis review
 - >> RPG-7 is now the sole considered Shaped Charge Threat,
 - » RPG7-V has been measured at 141 mm³/µs²
 - » Due to lack of RPG-7 reliability across various manufacturers, it is necessary to develop RPG-7 surrogate,

NEW THREAT DEFINITION

Many nations are designing their own RPG-7 surrogate and/or Standardised Shaped Charge

■ **USA**: LX-14 81mm Shaped Charge (MIL-STD-2105(D) requirement)

• France : CCEB 62

Germany: 75 mm Shaped Charge "PG-7 German replica"

FRANCE

- CCEB 62 >> the French Standardized Shaped Charge for IM Signature assessment
 - MoD Instruction N°211893/DEF/DGA/INSP/IPE July 21, 2011
 - STANAG 4526 implemented with CCEB62
 - Test Procedure defined in French Standard: NF T70-511
 - CCEB62 performances characteristics are available
 - But these are currently re-checked for new production phase validation

CCEB62 manufectured by NEXTER Munitions

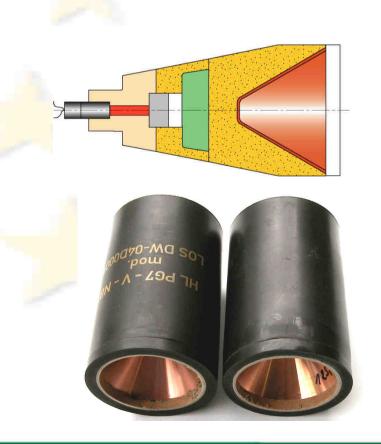
FRANCE

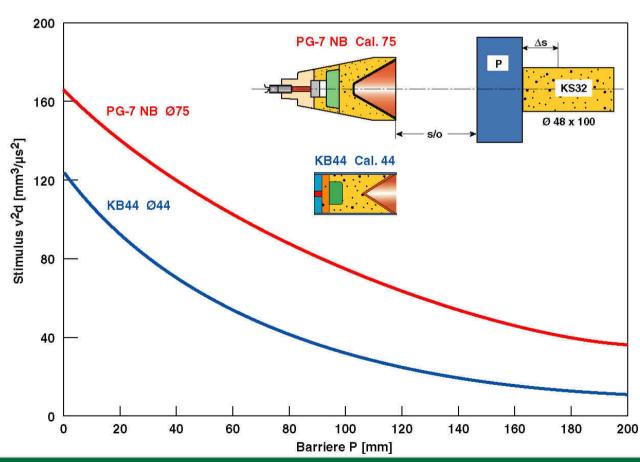
- Conditioning mild steel plates can be used
 - Critical V²d determination: detonation/no detonation for PBXs characterization
 - Adjust V²d to specified value (customer requirements)

V²d (mm³/μs²)	203	103	93	82.5	72	62	41.5	52	31	21
Steel Plate thickness (mm)	0	20	25	40	60	80	110	150	200	280

FRANCE

- CCEB 62: Example of Free Jet X-Ray pictures (at two successive times)
 - Note straightness diameter




X-Ray picture by SAFRAN Herakles

GERMANY

- PG-7 replica would become German standard
 - PG-7 replica (75 mm) manufactured by Dynamit Nobel.

USA

- LX-14 81mm appears as US Standard Shaped Charge
 - MIL-STD-2105(D) requirement
 - Charge design and performances are available (E. L. Baker's Paper)
 - Tests seem to be always carried out with a 4" aluminum conditioning block, in that situation
 - > the $v^2d = 141 \text{ mm}^3/\mu s^2$,
 - » tolerance about this value not given

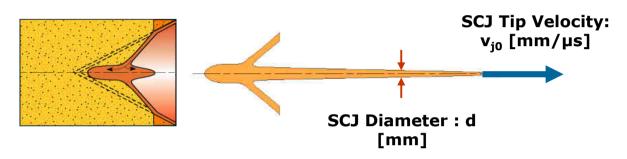
USA

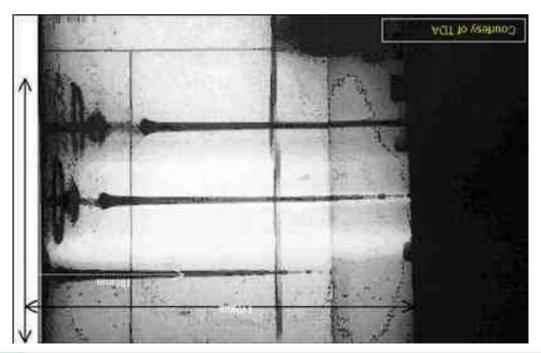
- LX-14 81mm appears as US Standard Shaped Charge (cont'd)
 - the LX14 explosive charge characteristics are not precisely defined:
 - » no real guarantee that various LX14 batches if manufactured by different producers will have the same performance,
 - » real performance of each producer would be checked.

IMEMG CONCERNS & COMMENTS

HARMONISATION NEEDS

- Concerned by the lack of consistency in various test procedures.
- Difficult to compare munitions responses to Shaped Charge Jet attack.
- NATO standards should be agreed and practicable with reproducibility by all member countries.
- IMEMG experts intend to support current harmonization efforts and wish to highlight the fact that next STANAG 4526 should list a very limited number of approved Shaped Charges types and test set-up to each nation.

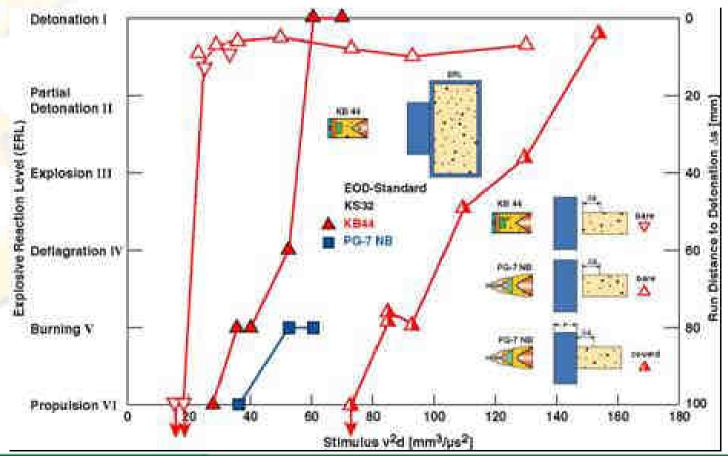

STANDARDIZED SHAPED CHARGES


- Shaped charge jet harmonization has really begun, even if charges are different for each nation:
 - LX-14 81 mm, CCEB 62, PG-7 Replica
 - with v²d that could be closed to 141 mm³/µs²
- Each Shaped Charge referred to should have an available and comprehensive technical data pack.

SHAPED CHARGES PERFORMANCES CARACTERISATION

Shaped Charge Shaped Charge Jet Formation

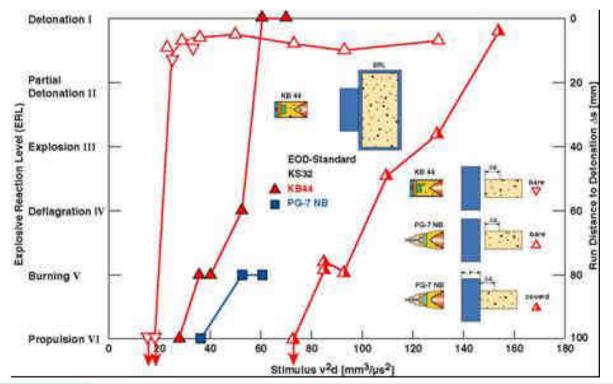
X-Ray picture by TDA Armaments


SHAPED CHARGES PERFORMANCES CARACTERISATION

- Measuring v²d not easy or trivial:
 - Diameter to be considered
 - » Tip diameter ?
 - » Average diameter between fixed positions?
 - Velocity to be considered
 - Stand-off value
 - V2d tolerance +/- 10 % ?

STANDARDISED TEST PROCEDURES

Test set-up may have a real influence on tested munition response:



Experiments by MBDA-TDW Gmbh

STANDARDISED TEST PROCEDURES

- Same stimulus of v2d around 55 / 60 mm3/µs2
- low order "burning" or "Propulsion" (Explosive Reaction Level ERL = V r VI) is observed if the shoot is done with PG-7 (blue squares),
- full detonation (ERL = I) is observed if the KB44 (red triangles) is used.

Experiments by MBDA-TDW Gmbh

STANDARDISED TEST PROCEDURES

- Similar observations were done on propellants.
- not only v²d is important for the reaction level but also v and d themselves.
- Future standard STANAG Shaped Charge should <u>not vary too much in</u> caliber.
- Reason why it is necessary to standardize the STANAG shaped charge and also the test set-up in the next STANAG 4526 edition.
- kind of Round Robin tests should be organized under NATO or MSIAC authority, in order to compare the three described shaped charges against the same target / explosive arrangement.
- to prove that there is no bias, depending on a given shaped charge and thus would give more reliability in data comparisons.

ALTERNATE v²d VALUE

- v²d stimulus of 141 mm³/μs² would be much too high:
 - » most charges (including insensitive PBX) would detonate,
 only few EIS would survive (Extremely Insensitive Substance in accordance with UN HD 1.6).
 - STANAG to define different stimuli according to Life Cycle and Threat Hazard Assessment

If standard procedure is defined with the stimulus: v^2d is 141 mm³/ μ s² then, alternative procedure could consider stimulus around 60 to 70 mm³/ μ s².

CONCLUSIONS

CONCLUSION

See you in Brest, France, 12-16 May 2014

➤ MSIAC Workshop !!!

AUTHORS

• CEA – DAM FRANCE
Frank DAVID-QUILLOT

- EURENCO Yves GUENGANT
- MBDA-F Michel VIVES
- NEXTER Munitions
 Frederic NOZERES
- ROXEL
 Raymond COLENO
- TDA Armements
 Carole FOURNIER
- RWM Italia SpA ITALY
 Massimo CASTIGLIA

MBDA TDW
 Dr Werner ARNOLD

OW GERMANY

RHEINMETALL WM GmbH
 Dr Gerhard HUBRICHT

AWE Plc.
 Helen FLOWER

- BAE Systems GCSM
 Charles MARSHALL
- CHEMRING ENERGETICS
 John HAND
- MBDA-UK
 Sean RANDALL